Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Clin Immunol ; 251: 109342, 2023 06.
Article in English | MEDLINE | ID: covidwho-2303610

ABSTRACT

BACKGROUND: Information regarding the heterologous prime-boost COVID vaccination has been fully elucidated. The study aimed to evaluate both humoral, cellular immunity and cross-reactivity against variants after heterologous vaccination. METHODS: We recruited healthcare workers previously primed with Oxford/AstraZeneca ChAdOx1-S vaccines and boosted with Moderna mRNA-1273 vaccine boost to evaluate the immunological response. Assay used: anti-spike RBD antibody, surrogate virus neutralizing antibody and interferon-γ release assay. RESULTS: All participants exhibited higher humoral and cellular immune response after the booster regardless of prior antibody level, but those with higher antibody level demonstrated stronger booster response, especially against omicron BA.1 and BA.2 variants. The pre-booster IFN-γ release by CD4+ T cells correlates with post-booster neutralizing antibody against BA.1 and BA.2 variant after adjustment with age and gender. CONCLUSIONS: A heterologous mRNA boost is highly immunogenic. The pre-existing neutralizing antibody level and CD4+ T cells response correlates with post-booster neutralization reactivity against the Omicron variant.


Subject(s)
COVID-19 , Immunity, Humoral , Humans , T-Lymphocytes , 2019-nCoV Vaccine mRNA-1273 , SARS-CoV-2 , COVID-19/prevention & control , Vaccination , Antibodies, Neutralizing , CD4-Positive T-Lymphocytes , Antibodies, Viral
2.
J Microbiol Immunol Infect ; 56(2): 207-235, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2246412

ABSTRACT

Coronavirus disease-19 (COVID-19) is an emerging infectious disease caused by SARS-CoV-2 that has rapidly evolved into a pandemic to cause over 600 million infections and more than 6.6 million deaths up to Nov 25, 2022. COVID-19 carries a high mortality rate in severe cases. Co-infections and secondary infections with other micro-organisms, such as bacterial and fungus, further increases the mortality and complicates the diagnosis and management of COVID-19. The current guideline provides guidance to physicians for the management and treatment of patients with COVID-19 associated bacterial and fungal infections, including COVID-19 associated bacterial infections (CABI), pulmonary aspergillosis (CAPA), candidiasis (CAC) and mucormycosis (CAM). Recommendations were drafted by the 7th Guidelines Recommendations for Evidence-based Antimicrobial agents use Taiwan (GREAT) working group after review of the current evidence, using the grading of recommendations assessment, development, and evaluation (GRADE) methodology. A nationwide expert panel reviewed the recommendations in March 2022, and the guideline was endorsed by the Infectious Diseases Society of Taiwan (IDST). This guideline includes the epidemiology, diagnostic methods and treatment recommendations for COVID-19 associated infections. The aim of this guideline is to provide guidance to physicians who are involved in the medical care for patients with COVID-19 during the ongoing COVID-19 pandemic.


Subject(s)
COVID-19 , Mycoses , Humans , COVID-19/diagnosis , COVID-19/epidemiology , SARS-CoV-2 , Taiwan/epidemiology , Pandemics , Mycoses/diagnosis , Mycoses/drug therapy , COVID-19 Testing
3.
J Microbiol Immunol Infect ; 56(3): 442-454, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2241580

ABSTRACT

COVID-19-associated mold infection (CAMI) is defined as development of mold infections in COVID-19 patients. Co-pathogenesis of viral and fungal infections include the disruption of tissue barrier following SARS CoV-2 infection with the damage in the alveolar space, respiratory epithelium and endothelium injury and overwhelming inflammation and immune dysregulation during severe COVID-19. Other predisposing risk factors permissive to fungal infections during COVID-19 include the administration of immune modulators such as corticosteroids and IL-6 antagonist. COVID-19-associated pulmonary aspergillosis (CAPA) and COVID-19-associated mucormycosis (CAM) is increasingly reported during the COVID-19 pandemic. CAPA usually developed within the first month of COVID infection, and CAM frequently arose 10-15 days post diagnosis of COVID-19. Diagnosis is challenging and often indistinguishable during the cytokine storm in COVID-19, and several diagnostic criteria have been proposed. Development of CAPA and CAM is associated with a high mortality despiteappropriate anti-mold therapy. Both isavuconazole and amphotericin B can be used for treatment of CAPA and CAM; voriconazole is the primary agent for CAPA and posaconazole is an alternative for CAM. Aggressive surgery is recommended for CAM to improve patient survival. A high index of suspicion and timely and appropriate treatment is crucial to improve patient outcome.


Subject(s)
COVID-19 , Mucormycosis , Pulmonary Aspergillosis , Humans , Mucormycosis/diagnosis , Mucormycosis/drug therapy , Pandemics , COVID-19/complications , Fungi
4.
Mol Cell Proteomics ; 22(4): 100507, 2023 04.
Article in English | MEDLINE | ID: covidwho-2232174

ABSTRACT

In November 2022, 68% of the population received at least one dose of COVID-19 vaccines. Owing to the ongoing mutations, especially for the variants of concern (VOCs), it is important to monitor the humoral immune responses after different vaccination strategies. In this study, we developed a SARS-CoV-2 variant protein microarray that contained the spike proteins from the VOCs, e.g., alpha, beta, gamma, delta, and omicron, to quantify the binding antibody and surrogate neutralizing antibody. Plasmas were collected after two doses of matching AZD1222 (AZx2), two doses of matching mRNA-1273 (Mx2), or mixing AZD1222 and mRNA-1273 (AZ+M). The results showed a significant decrease of surrogate neutralizing antibodies against the receptor-binding domain in all VOCs in AZx2 and Mx2 but not AZ+M. A similar but minor reduction pattern of surrogate neutralizing antibodies against the extracellular domain was observed. While Mx2 exhibited a higher surrogate neutralizing level against all VOCs compared with AZx2, AZ+M showed an even higher surrogate neutralizing level in gamma and omicron compared with Mx2. It is worth noting that the binding antibody displayed a low correlation to the surrogate neutralizing antibody (R-square 0.130-0.382). This study delivers insights into humoral immunities, SARS-CoV-2 mutations, and mixing and matching vaccine strategies, which may provide a more effective vaccine strategy especially in preventing omicron.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , SARS-CoV-2 , ChAdOx1 nCoV-19 , Immunity, Humoral , 2019-nCoV Vaccine mRNA-1273 , Protein Array Analysis , COVID-19/prevention & control , Antibodies, Neutralizing
5.
Anal Chem ; 94(17): 6529-6539, 2022 05 03.
Article in English | MEDLINE | ID: covidwho-1805540

ABSTRACT

The disease progression of COVID-19 varies from mild to severe, even death. However, the link between COVID-19 severities and humoral immune specificities is not clear. Here, we developed a multiplexed spike variant protein microarray (SVPM) and utilized it for quantifying neutralizing activity, drug screening, and profiling humoral immunity. First, we demonstrated the competition between antispike antibody and ACE2 on SVPM for measuring the neutralizing activity against multiple spike variants. Next, we collected the serums from healthy subjects and COVID-19 patients with different severities and profile the neutralizing activity as well as antibody isotypes. We identified the inhibition of ACE2 binding was stronger against multiple variants in severe compared to mild/moderate or critical patients. Moreover, the serum IgG against nonstructural protein 3 was elevated in severe but not in mild/moderate and critical cases. Finally, we evaluated two ACE2 inhibitors, Ramipril and Perindopril, and found the dose-dependent inhibition of ACE2 binding to all the spike variants except for B.1.617.3. Together, the SVPM and the assay procedures provide a tool for profiling neutralizing antibodies, antibody isotypes, and reagent specificities.


Subject(s)
COVID-19 , Protein Array Analysis , Angiotensin-Converting Enzyme 2 , Antibodies, Neutralizing , Humans , Immunoglobulin Isotypes
6.
Biosens Bioelectron ; 204: 114067, 2022 May 15.
Article in English | MEDLINE | ID: covidwho-1670217

ABSTRACT

SARS-CoV-2 is quickly evolving from wild-type to many variants and spreading around the globe. Since many people have been vaccinated with various types of vaccines, it is crucial to develop a high throughput platform for measuring the antibody responses and surrogate neutralizing activities against multiple SARS-CoV-2 variants. To meet this need, the present study developed a SARS-CoV-2 variant (CoVariant) array which consists of the extracellular domain of spike variants, e.g., wild-type, D614G, B.1.1.7, B.1.351, P.1, B.1.617, B.1.617.1, B.1.617.2, and B.1.617.3. A surrogate virus neutralization on the CoVariant array was established to quantify the bindings of antibody and host receptor ACE2 simultaneously to spike variants. By using a chimeric anti-spike antibody, we demonstrated a broad binding spectrum of antibodies while inhibiting the bindings of ACE2 to spike variants. To monitor the humoral immunities after vaccination, we collected serums from unvaccinated, partial, or fully vaccinated individuals with either mRNA-1273 or AZD1222 (ChAdOx1). The results showed partial vaccination increased the surrogate neutralization against all the mutants while full vaccination boosted the most. Although IgG, IgA, and IgM isotypes correlated with surrogate neutralizing activities, they behave differently throughout the vaccination processes. Overall, this study developed CoVariant arrays and assays for profiling the humoral responses which are useful for immune assessment, vaccine research, and drug development.


Subject(s)
Biosensing Techniques , COVID-19 , Antibodies, Neutralizing , Antibodies, Viral , ChAdOx1 nCoV-19 , Humans , Immunity, Humoral , Protein Array Analysis , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
7.
J Immunol Res ; 2021: 8214656, 2021.
Article in English | MEDLINE | ID: covidwho-1546598

ABSTRACT

Dengue fever is an infection by the dengue virus (DENV) transmitted by vector mosquitoes. It causes many infections in tropical and subtropical countries every year, thus posing a severe disease threat. Cytokine storms, one condition where many proinflammatory cytokines are mass-produced, might lead to cellular dysfunction in tissue/organ failures and often facilitate severe dengue disease in patients. Interleukin- (IL-) 18, similar to IL-1ß, is a proinflammatory cytokine produced during inflammation following inflammasome activation. Inflammatory stimuli, including microbial infections, damage signals, and cytokines, all induce the production of IL-18. High serum IL-18 is remarkably correlated with severely ill dengue patients; however, its possible roles have been less explored. Based on the clinical and basic findings, this review discusses the potential immunopathogenic role of IL-18 when it participates in DENV infection and dengue disease progression based on existing findings and related past studies.


Subject(s)
Dengue Virus/physiology , Dengue/immunology , Inflammasomes/metabolism , Inflammation/immunology , Interleukin-18/immunology , Aedes , Animals , Disease Vectors , Humans , Interleukin-1beta/immunology
8.
Anal Chem ; 93(21): 7690-7698, 2021 06 01.
Article in English | MEDLINE | ID: covidwho-1236048

ABSTRACT

Coronavirus is an enveloped RNA virus that causes mild to severe respiratory diseases in humans, including HKU1-CoV, 229E-CoV, NL63-CoV, OC43-CoV, SARS-CoV, MERS-CoV, and SARS-CoV-2. Due to the outbreak of SARS-CoV-2, it is important to identify the patients and investigate their immune responses. Protein microarray is one of the best platforms to profile the antibodies in the blood because of its fast, multiplexed, and sensitive nature. To fully understand the immune responses and biological specificities, this study developed a human coronavirus (HCoV) protein microarray and included all seven human coronaviruses and three influenza viruses. Each protein was printed in triplicate and formed 14 identical blocks per array. The HCoV protein microarray showed high reproducibility and sensitivity to the monoclonal antibodies against spike and nucleocapsid protein with detection limits of 10-200 pg. The HCoV proteins that were immobilized on the array were properly folded and functional by showing interactions with a known human receptor, e.g., ACE2. By profiling the serum IgG and IgA from 32 COVID-19 patients and 36 healthy patients, the HCoV protein microarray demonstrated 97% sensitivity and 97% specificity with two biomarkers. The results also showed the cross-reactivity of IgG and IgA in COVID-19 patients to spike proteins from various coronaviruses, including that from SARS-CoV, HKU1-CoV, and OC43-CoV. Finally, an innate immune protein named surfactant protein D showed broad affinities to spike proteins in all human coronaviruses. Overall, the HCoV protein microarray is multiplexed, sensitive, and specific, which is useful in diagnosis, immune assessment, biological development, and drug screening.


Subject(s)
COVID-19 , Coronavirus OC43, Human , Humans , Protein Array Analysis , Reproducibility of Results , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
SELECTION OF CITATIONS
SEARCH DETAIL